skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Adhikari, Pashupati_R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Reverse electrowetting‐on‐dielectric (REWOD)‐based energy harvesting has been studied over the last decade as a novel technique of harvesting energy by actuating liquid droplet(s) utilizing applied mechanical modulation. Much prior research in REWOD has relied on planar electrodes, which by its geometry possess a limited surface area. In addition, most of the prior REWOD works have applied a high bias voltage to enhance the output power that compromises the concept of self‐powering wearable motion sensors in human health monitoring applications. In order to enhance the REWOD power density resulting from an increased electrode–electrolyte interfacial area, high surface area electrodes are required. Herein, electrical and multiphysics‐based modeling approaches of REWOD energy harvester using structured rough surface electrodes are presented. By enhancing the overall available surface area, an increase in the overall capacitance is achieved. COMSOL and MATLAB‐based models are also developed, and the empirical results are compared with the models to validate the performance. Root mean square (RMS) power density is calculated using the RMS voltage across an optimal load impedance. For the proposed rough electrode REWOD energy harvester, maximum power density of 3.18 μW cm−2is achieved at 5 Hz frequency, which is ≈4 times higher than that of the planar electrodes. 
    more » « less